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Abstract

This research effort identifies and models the nonlinear time-variant behavior

exhibited by an avalanche photodiode (APD) array based laser ranging and detec-

tion (LADAR) system. This examination was prompted by the failure of the range

accuracy results, in test measurements, to approach the expected Cramer-Rao lower

bound for accuracy, and anomylous signal level behavior which was not predicted by

the system model.

Based on the original linear time-invariant (LTI) model, the expected evolution

of error in the LADAR signal is examined sequentially from the outgoing pulse through

signal digitization. This error evolution shows the LTI model does not contain a

mechanism for causing the observed signal deviations or to explain the failure of the

system to meet the Cramer-Rao lower bound. Therefore, a nonlinear time-variant

model is developed based on the interactions of the APDs in the array with the

array’s voltage regulator.

In the refined model, the sum photo-current for the entire array places a load

on a voltage regulator. Given a changing load during the 36 nanosecond range gate,

the voltage regulator cannot maintain its output at the reference voltage. The re-

sulting reverse bias voltage variations cause the responsivity of each APD to vary

in a nonlinear fashion. Because each APD in the array’s responsivity depends upon

the entire array’s photonic loading, each individual APD’s response is time variant.

However, if the system’s response to photonic loading is incorporated into the model

for each detector, ranging algorithms based on linear systems models can be used on

the resulting signals.
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Nonlinear Time-Variant Response

in an Avalanche Photodiode Array Based

Laser Detection and Ranging System

I. Introduction

1.1 Laser Radar Applications

Advances in airpower have assured the future of laser radar on the modern bat-

tlefield. In the absence of air superiority, an army will find that any vehicle, structure,

or even troop concentration, which can be located, can be destroyed. Thus, camou-

flage and deception have taken on a key position in military operations. Keeping

pace with these developments, modern camouflage extends beyond the familiar vi-

sual camouflage patterns which break up the outlines of personnel and equipment. It

has evolved into full signature management systems, addressing how the camouflage

matches its intended environment in the visible, infrared, and radar regimes [14].

Laser Detection and Ranging (LADAR) is a method, under continuing development,

for defeating this type of camouflage.

Currently fielded optical sensor systems primarily rely upon their spatial res-

olution to locate and identify targets. An operator examines an image with finite

resolution collected by systems such as low light cameras, photomultiplier based pas-

sive night vision devices, or forward looking infrared systems to identify targets. While

these systems may provide magnification and extend the portion of the electromag-

netic spectrum the operator can view, the images are still interpreted by the operator

for target recognition. Therefore, classical techniques to deceive operators attempt

to make the image of the object appear to be something else or to cause insufficient

contrast between the target and its background for detection.

LADAR may be exploited to overcome both methods of deception. First, by

adding range information to the image, the three dimensional shape of objects can
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be determined regardless of the intensity image mapped over its surface. Even if the

exact image of the terrain behind it were displayed on the imaged side of a target, its

range profile will stand out from the true background. If the material used to mask or

break up the target’s signature does not cover it completely, as is often the case with

camouflage netting, there will be gaps through which the target can be viewed [14].

LADAR systems capable of detecting multiple returns can form multiple layer range

profiles showing both the camouflage and what is underneath it.

To be effective on the modern battlefield, a LADAR system must be able to

quickly and accurately make range measurements on its entire field of view (FOV).

As with all measurement devices, random and systematic error is introduced into the

results. While typically random errors can only be suppressed, systematic errors can

be removed from a well-modeled system. The objective of this work is to identify and

delineate the random from the systematic errors in the range data generated by an

experimental FLASH LADAR, and to develop a model which can be used to remove

the systematic errors.

1.2 AFRL/SNJM FLASH LADAR Specifications

The imaging angle-angle-range LADAR operated by the Electro-Optic Com-

bat Identification Branch of the Air Force Research Laboratories’ Sensors Direc-

torate (AFRL/SNJM) is a FLASH LADAR system from Advanced Scientific Con-

cepts (ASC) mated with a 1.55-µm Big Sky CFR-400 laser. In angle-angle-range

format, as in a digital camera, a common optical system forms an image on an array

of individual detectors or pixels arranged in a grid pattern. Consequently, each pixel

is exposed to an instantaneous field of view (IFOV) spanning some finite vertical and

horizontal angle within the FOV of the entire system.

Range data is found by illuminating the target area with a laser pulse and

delaying data capture to collect the returning pulse. The irradiance on each pixel in

the array is then recorded at a 1.862-nanosecond sampling period to form a series of

nineteen images over approximately 35 nanoseconds. The time series of irradiance

2



values recorded by each pixel is processed to determine a range for the object or

objects within its IFOV.

The most novel component of the FLASH LADAR system is an avalanche pho-

todiode (APD) array fabricated by Sensors Unlimited Inc. which is mated to an ASC

Read-Out Integrated Circuit (ROIC). The detector array is 128 x 128 pixels, repre-

senting a significant advance in indium gallium arsenide APD array fabrication at the

time of its development. Due to the guard ring structure of each APD, the active

detector area is approximately 40-µm x 40-µm with detectors on 100-µm centers. Im-

mersion lenses are used to increase the effective fill factor of the detector array to near

100 percent, significantly increasing the flux collecting efficiency of the receiver [17].

The FLASH LADAR has two modes for sampling the period in which the laser

pulse actually returns to the detector. In stop mode, a buffer is cyclically filled and

overwritten for several samples after any pixel crosses an irradiance threshold. Thus,

the range to the target need not be guessed to determine when to stop overwriting

the buffer. In sular mode, a software selected range gate is selected to delay write-out

until a returning pulse from the selected range is expected to arrive. Both modes

result in an output record in which the first image written out is not necessarily the

first in the true time sequence. This is simply rectified by reordering the images after

the buffer stop time to be first, and then appending any leading images to the end of

the record [17].

The sular operating mode was used almost exclusively for collecting data sets

for algorithm development. In this mode, the range gate consistently observes the

same area, so multiple frames can be averaged to reduce noise. The measurement

consistency also led to the development of a direct method for removing ambient

light and fixed pattern noise. This method consisted of subtracting a frame of data

taken in sular mode with the laser inactive from frames taken with the laser active.

A system model was derived for the FLASH LADAR, incorporating a series of

assumptions, which are typical of cameras and infrared imagers. First, each detector

3



was considered to be a completely independent device comprised of an APD, capacitor

bank, amplifier, and analog-to-digital conversion circuitry. Second, each device has

a characteristic average responsivity, due to the APD responsivity and amplifier,

and there is some variation in responsivity between devices. Third, each detector

is capable of collecting and digitizing the photonic signals of interest with negligible

impulse response effects. This model, for a single detector, is shown in Figure 1.1.

Figure 1.1: Original system model

1.3 Design Impact on System Performance

The FLASH LADAR system was designed to meet a series of design require-

ments. Chief among these was a high a responsivity which peaked in the near infrared

region. A high, for a developmental device, spatial resolution was also required.

Imaging arrays of APDs are significant for laser radar applications because they

have greater than unity detector gain. The gain is derived from one incident photon

generating many electrons in the detector material, and allows for detector responsiv-

ities as high as 10 Amps/Watt at the design wavelength of the APD array [2]. A high

responsivity is critical for laser radars examining distant targets, because very few
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photons will be collected by the imaging optics. Alternatively, this high responsivity

can be exploited to allow eye-safe experimentation on nearby targets.

While a high responsivity improves the signal to noise ratio of the LADAR

return, the type of ranging algorithms which produces the most accurate results de-

pends strongly on the system resolution trade offs. For a given system, the highest

possible spatial and range resolution for a given system is desirable, but any realizable

system will always have some total sample count limitation per range image. This

limit may arise from repetition rate requirements or the limitations of focal plane

array FPA and ROIC fabrication technologies. In the case of the FLASH LADAR,

the FPA was fabricated with 128x128 detectors and the ROIC with 19 integrating

capacitors switching at a fabrication limit.

Khourey et al. defines a voxel as the volume enclosed by the sample spacing

across the image plane and in range. It is common to design a system to achieve a

nearly cubic voxel at a design range, for instance one cubic meter at ten kilometers [7].

In this case, with an f/2 lens system, the sampled voxel is approximately 1” by 1”

by 1.5’ at a typical target range of approximately 80 yards. Consequently, the data

collected for algorithm development has much more spatial resolution than range

resolution, due to sampling. Therefore, early algorithmic work focused on algorithms

capable of making sub-sample accuracy range determinations.

1.4 Initial Research Results

Initial research emphasized target sets for which the results were readily pre-

dicted by the system model. One of the first test was conducted on a two surface

target board set shown in Figure 1.2. Since both target surfaces are retroreflecting,

the returning signals from them are expected to be delayed and attenuated versions

of the outgoing pulse shape, with additional constant valued contributions from the

ambient light and dark current. The return from any off target pixel is expected to

consist of the ambient light and dark current, as well as a small contribution from

5



atmospheric backscatter of the laser pulse. An unmodified example of the expected

first and second target surface returns at the receiver is shown in Figure 1.3.

Figure 1.2: Two surface retroreflecting target

These signals are conditioned by a background subtraction scheme, in which an

ambient light illuminated record is subtracted from a pulse illuminated record. An

ambient light response is taken by disabling the laser output and recording the system

response at the same range delay as the pulse illuminated response. Subtracting the

ambient light illuminated signal was expected to remove both the photonic contribu-

tions due to ambient light, and the dark current response of the system. The expected

final results are shown in Figure 1.4

The first sub-range sample accuracy algorithm tests on this target resulted in

the two surfaces, which were 40” apart, being measured to be 44” apart. This result

was a significantly less accurate measurement than was expected for the algorithm

being tested, which was based on a linear time-invariant system model and postulated

return pulse shape [1]. While examining these results, it was noted that the recorded

signals did not match the signals predicted by the system model. The recorded returns

are displayed in Figure 1.5.

6
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Figure 1.3: a. First surface return b. Second surface return c. Off target

While it appears that there are two returns in each of pulse illuminated returns,

this cannot be the case. The targets in the IFOV of the pixels shown are retroreflect-

ing. This indicates that the observed behavior may be some form of system response

ringing. Upon close inspection, it can also be seen that the appearant pulse widths

are different, between the first and second surfaces. Once again, this cannot be the

case for a pair of retroreflecting surfaces. Finally, the behavior of the off target pixel

deviates severely from the expected system response. Any response due to atmo-

spheric backscatter must begin as the laser pulse leaves the aperture, and will be a

nearly linear response when measured at a significant distant from the aperture, over

the range gate.

An additional data set under consideration consists of the same target board

set, in a much more range diverse scene. In this case, the first surface of the target

represents the start of a broader set of range returns including the second surface,

personnel, and foliage. Figure 1.6 subplot a. shows the pulse shape recorded for the

first surface of the target board. This pulse exhibits a broader shape than expected,
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Figure 1.4: a. First surface return b. Second surface return c. Off target

and what may be the start of the anomylous ringing behavior. In the off target pixel

response in Figure 1.6 subplot b., a high negative correlation can be seen between the

value after background subtraction and the pulse shape from the first surface. This

response is distinctly different from the ambient response value, after dark current

subtraction, shown in Figure 1.6 subplot c.

This anomylous behavior has several significant implications on the military

application of this LADAR system. The observed behavior makes multiple object

ranging inside an IFOV impossible. Any multiple surface ranging algorithm would

assign two distinct ranges to the recorded data in Figure 1.5, even though a second

surface is known to be absent. In general, ranging algorithms would also assign a range

to the off target pixels, most likely near the twelfth sample in Figure 1.5. However,

the effects of these behaviors on the accuracy of single surface ranging was uncertain.

In an effort to develop a better expectation of the system and algorithm’s an-

alytical measurement accuracy, the Cramer-Rao lower bound was calculated for the
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Figure 1.5: Pulsed values minus background a. First surface return b. Second
surface return c. Off target return

sub-range sample accuracy algorithm under consideration, given a single-surface test

case. For this case, the bound was found to be approximately 3/5”. However, this

result is for an unbiased estimator and the ranging algorithm does not meet this re-

quirement for returns exhibiting the observed anomylous behavior [16]. In practice,

the FLASH LADAR range accuracy for the algorithm and test case was found to

be 2.5”. Therefore, the next major research objective is to identify the source of and

model the anomylous signal behavior, and implement the resulting model into ranging

algorithms.

1.5 Research Scope

The primary objective of this work is to investigate and model the anomylous

signal behavior of the FLASH LADAR under optical loading. A refined system level

model is proposed, based upon key system elements for which partial models or de-

scriptions are available. Due to the lack of an appropriately controlled test case, only

a forward model is developed. Although the detailed analysis to follow is specific to
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Figure 1.6: a. First surface after background subtraction b. Off target pixel after
background subtraction c. off target ambient response minus dark response

the FLASH LADAR, the general principles of the model are applicable to any APD

array based LADAR, of similar design.

1.6 Research Methodology

The type and scope of investigations which can be carried out to address this

problem are, by necessity, limited. The functionality of the LADAR system cannot

be compromised, so partial disassembly for component measurements is not possible.

There is also a limited amount of published information regarding detailed system

specifications, due to intellectual property and security requirements. Consequently,

the system is treated in a gray-box manner, with limited known parameters.

The analytical approach which follows was used to identify the deviations be-

tween the modeled and recorded system responses, and develop a refined model. First,

the original system’s error model is presented following the laser pulse from trans-

mission to and from the target, through the optical system, into the detection and
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digitization process, and finally through range interrogation by various algorithms.

This signal error evolution accounts for deviations due to known sources, in their

generally accepted forms. Then, a hypothetical system model is proposed to explain

the anomylous behavior. Beginning with the digitized output of the system, the de-

tection process is reversed to examine the system behavior, and develop a predictive

forward model for the system. The forward model is completed by solving a system of

linear constant-coefficient difference equations to identify the remaining linear system

behavior. Finally, the proposed forward model is compared to a recorded case for

validation.
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II. Background

2.1 Introduction

The objective of the FLASH LADAR system is to assign a range to each pixel by

evaluating a recorded pulse return with a ranging algorithm. It was presumed, in the

original model, that the LADAR system’s response was both linear time-invariant and

had negligible effects on the recorded pulse shape. The performance of any ranging

algorithm is degraded by random noise, and all ranging algorithms incorporate a

series of assumptions about the signal being processed. If the noise level is too high

or the assumptions are in error, the Cramer-Rao limit for ranging accuracy cannot be

achieved. Therefore, the expected evolution of error in the FLASH LADAR model

is examined to account for known systematic and random effects. Then, a series

of common ranging algorithms and their associated assumptions are presented and

compared to the behavior of the recorded signals.

2.2 Signal Error Evolution

The ideal return signal for the FLASH LADAR is the convolution of a linearly

scaled version of a known outgoing laser pulse shape with a single retro-reflecting

surface in each pixel’s IFOV [18]. The resulting return is an attenuated copy of the

outgoing laser pulse recorded some time after the pulse was transmitted. However,

numerous factors cause the recorded return to deviate from this ideal state: random

error is introduced by the lasing process; the atmosphere between the FLASH LADAR

and target surfaces; the photonic detection process, and the digitization process.

Systemic errors are also introduced by the range profile of the target within each pixel’s

IFOV, the system’s optical train, the detector array, and the digitization process.

These sources of error will be examined following the system’s signal path from the

outgoing laser pulse to the reported digital output.

2.2.1 Transmitted Pulse. A well-characterized laser source is a critical first

component of any LADAR system, because all ranging methods require some knowl-
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edge of the transmitted pulse shape. While well-behaved pulses can be consistently

generated, there will always be some random error between the designed and the

actual individual outgoing pulse shape. When ranging algorithms are applied, any

deviation from the expected pulse shape in a LADAR return will eventually mani-

fest itself as a range estimation error. Even the mathematically ideal returning pulse

shape can introduce error in deconvolution, if more than one range is represented in

a pixel’s IFOV [18].

The transmitted pulse must be of sufficient power that a detectable number of

photons will be scattered back towards the LADAR from the target being illuminated.

Additional power, beyond the device minimum for detetion, is required because the

signal entering the detector will not consist solely of the laser pulse energy reflected

from the target. It will also include in-band photons from other sources such as self

emission or solar reflection [9]. The pulse must contain sufficient power to achieve at

least a signal-to-noise ratio of one with these sources, upon arrival at the detector.

The atmosphere, through which the laser pulse travels, affects the laser pulse

traveling both to and from the target. Scattering and absorption in the atmosphere

attenuate the returning pulse by reducing the number of photons which return to the

FLASH LADAR. Speckle noise, which arises from the coherence of the laser pulse, also

causes error in the returning signal. The end result of speckle noise is to cause random

deviations in the flux distribution collected at the receiver, due to interference [4].

2.2.2 Optical Train. The first systematic error introduced by the receiver is

due to the optical system’s point spread function (PSF). For perfect optics, the PSF

is governed by diffraction through the finite aperture of the system’s entrance pupil.

The image formed by the optical system is the convolution of the PSF with the flux

distribution on the system’s entrance pupil. The normal result, for physical systems,

is to introduce light from a point source onto a finite area.

Assuming diffraction limited performance, the f/2 lens system used is expected

to yield a diffraction blur spot diameter ddiff of 7.564-µm according to the relationship
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expressed in equation (2.1) [3]. For the discretely sampled image plane of the LADAR,

the key deviation arises from a portion of the irradiance which was expected to fall

on a certain pixel instead falling on multiple nearby pixels. Therefore, if uncorrected,

the irradiance record on each pixel will contain information from outside its IFOV [5].

ddiff = 2.44 ∗ λ ∗ f/# (2.1)

Any realizable lens system also introduces aberrations in the image. The laser

source means that the light of interest entering the system is quasi-monochromatic,

and the primary aberrations will be the Seidel aberrations [6]. For the purposes of

ranging, the most harmful of effect spherical aberration, coma and astigmatism is

to blur the image by introducing light from outside each pixel’s IFOV. Petzval field

curvature and distortion also redistribute the light from the target. If the image is

properly sampled, these aberrations spatially misplace the resulting range from its true

location on the object, but may not introduce ambiguity in the ranging process [6].

The average PSF can be accurately measured, and the aberrations minimized

and measured for an optical train. This is particularly straight forward for sys-

tems such as LADARs, which are nearly monochromatic [6]. For well-characterized

systems, these effects can be deconvolved from the data if the minimum sampling

requirements are met and random noise can be addressed effectively [5].

2.2.3 Photonic and Detector Noise. Photonic detection is a random arrival

process, which is well studied for the system under consideration [4]. The pulse

returns from a coherently illuminated scene onto a detector with a sampling area

which is much larger than a coherence area on the detector. Therefore, the arrival

process takes on a negative binomial form dependent upon the average photon count

and speckle parameter [16]. The system operates at f/2, with a center wavelength of

1.55-µm, and a detector size of 100-µm x 100-µm. This yields a speckle cell width of

approximately 3-µm, and a detector area to speckle cell area ratio of 178 to 1. This
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ratio is the speckle parameter. For speckle parameters much greater than one, such

as this case, the arrival distribution approaches a Poisson distribution [16].

The detectors in the FLASH LADAR are avalanche photodiodes. APDs have

a non-unity internal gain term which multiplies shot and photonic noise along with

the signal, and introduces its own excess noise term as defined in equation (2.2).

This excess noise term, F, stems from the statistical nature of the gain term, and is

mathematically expressed as a function of the average gain, G, the electron impact

ionization coefficient, α, and the hole impact ionization coefficient, β [3]. The excess

noise factor typically begins to dominate other noise sources, including read-out noise,

above gains of twenty. It is not expected to be the dominant noise source for this

system, which has a gain of approximately ten.

F =
β

α
G +

(
1− β

α

) (
2− 1

G

)
(2.2)

Ideally, if each detector in the array were exposed to the same incident flux,

it would report the same averaged photo-electron count. In reality, each APD in

the array has its own average gain term and dark current. For constant operating

conditions, these terms are dependent upon the physical parameters of each device.

When exposed to a common input flux and allowed to reach a steady-state

value, the multiplicative effect of each device’s gain and the additive effect of its

dark current can be divided and subtracted out to produce a common photo-electron

count. The terms necessary for this normalization can then be recorded for each pixel,

as a correction factor. This type of correction is typically termed non-uniformity

correction (NUC) and is conducted on the final digital output of the device to remove

the combined deviations of the detector, amplifier, and sampling circuitry [9].

2.2.4 Sampling in Space and Range. The detector of an angle-angle-range

LADAR must sample intensities in both dimensions of the image plane and in range.

The Nyquist sampling requirement must be met in each dimension to form an un-
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aliased signal at the designed resolution. The factors determining the Nyquist sample

rate are quite different between the image plane and in range.

Across the image plane, the signal is truly band-limited due to the system’s

entrance pupil, and the signal can be sampled at a finite rate with no aliasing. For

a single wavelength, the highest spatial frequency, fc, which is passed by the optical

train can be calculated via equation (2.3). In this equation, ω is the effective aperture

radius, z, is the distance from the aperture to the focal plane, and λ is the wavelength

under consideration.

The FLASH LADAR uses an f/2 lens with a 10-cm entrance pupil. Therefore,

the highest spatial frequency which is passed by the optical system is fc = 1.613 ∗ 105

m−1. This requires a Nyquist sampling rate of 2∗fc which corresponds to a spacing of

3.1-µm. The system is sampled at 100-µm spacing, and is thus spatially undersampled.

Consequently, all of the information recorded by the detector array exhibits spatial

aliasing.

fc =
ω

λz
(2.3)

In range, the pulse shape defines the Nyquist sampling requirement and thus the

signal is never truly band-limited. As always when sampling a non-band limited sig-

nal, some noise is introduced due to aliasing. Typically, the aliasing noise is mitigated

by low pass filtering the signal prior to digitization. In this case, the smoothly vary-

ing pulse shape provides significant high-frequency attenuation, reducing the aliasing

effect. Additionally, any realizable optical detector applies a low-pass filtering oper-

ation to the incident signal, due to the finite detector integration time [5]. For this

system, the actual integration time of the detector is not known explicitly, although

it is necessarily shorter than the switching time of 1.862 nanoseconds. Based on these

factors, the noise due to aliasing in range is assumed to be negligible when compared

to other noise sources for this system.
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2.2.5 Read-Out and Digitization. In the temporal sampling process, each

detector sequentially charges twenty integrating capacitors. At the completion of the

overwriting cycle, the charge in the capacitors is read out via an amplifier and under-

goes an analog-to-digital conversion process. This process introduces read-out noise

based on charge deviation, individual amplifier gain variation, individual amplifier

additive offsets, injected amplifier noise, and the rounding process associated with

digitization. The random error introduced during read out is typically modeled as

Gaussian White Additive Noise, GWAN, while the variation between sets of detec-

tor circuitry is represented by an array of multiplicative and additive terms. Both

of these types of error enter the final digital count stored by the LADAR, which is

significantly rescaled in comparison to a true photo-electron count unless the system

is calibrated against a known photonic source.

2.3 Range Determination

An ever-increasing number of methods for deriving range estimates from LADAR

returns are available. Most of these methods are fundamentally deconvolution meth-

ods with different means of addressing uncertainty in the target shape and noise. Four

common methods which will be examined include peak detection, matched filtering,

Richardson-Lucy deconvolution, and an estimation-theory-based method [18].

2.3.1 Peak Detection. The simplest method of range estimation is peak

detection. Peak detection algorithms are best matched with pulses shorter than the

sampling time of the system, but can be applied to longer pulsed systems. This

method’s range accuracy is directly defined by the clock sampling time, since the peak

irradiance value will always be localized in a single time increment. If the returning

pulse is temporarily recorded, a clock is started when the pulse is fired. Then, when

the irradiance on the detector crosses a preset threshold, the clock is stopped. The

resulting round trip time is converted to a round trip distance, assuming the speed of

light in a vacuum. If data is recorded shortly before and after the stop time, multiple
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threshold crossings can be evaluated. In this way, multiple reflections in the field of

view can be ranged rather than only the first [18].

Peak detection provides consistent results in the presence of noise, but provides

the least accurate range estimation of all the methods compared in this section. Using

peak detection, the FLASH LADAR system has a range uncertainty of approximately

1.5’, which is acceptable for weapons ranging, but does not provide the detail necessary

for LADAR based target identification [16].

2.3.2 Matched Filtering. In matched filter detection, which is commonly

used in radar processing, a noisy or deformed input signal is processed by a filter

whose impulse response is the time reverse of the signal to be detected. The peak

of the resulting filtered waveform represents the point in time at which the highest

correlation was achieved [10]. The mathematical implementation of this system is

very fast, but multiple returns in the same signal and other deviations from the ex-

pected return shape significantly impact the accuracy of this method. Any additional

signal content shifts the position of highest correlation, and thus the range estimate,

towards the deviation signal’s range. Random noise is expressed by correlation peak

broadening and results in ambiguity in the range estimate.

2.3.3 Richardson-Lucy Deconvolution. Many current deconvolution algo-

rithms are based on the iterative Richardson-Lucy algorithm. As such, deconvolution

begins by numerically estimating the probability density function of an observed wave-

form, o(q, r, k), using each sample from each pixel position defined by q and r with

a range return centered at k. The intensity value in each time increment d(q, r, k)

is assumed to be a realization of a random variable, D(q, r, k), with a probability

density function based on a noise model appropriate for the system. Bayes Rule indi-

cates the relationship between the as-yet-unknown probability of the actual waveform

conditioned on the observed waveform, the probability of the observed waveform, and

the probability of the observed waveform conditioned on the actual waveform. This

relationship is shown in Equation (2.4).
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fO|D(o|D) =
fD|O(d| o)

fD(d)
(2.4)

A log likelihood estimator for o(q, r, k) then takes the form of Equation (2.5).

L(o) = ln(fD|O(d| o)) (2.5)

The likelihood estimator is then expanded into terms determined by the system

model, differentiated, and set equal to zero. An iterative updating solution is used

to solve the resulting intractable equation for o(q, r, knew) [15]. The solution of the

equation, o(q, r, knew), is a representation of a noisy range return for the pixel of

interest at a given range, knew. If the estimated noise probability distribution function

does not represent the actual noise distribution properly, this method may converge

on a false range or fail to converge at all. This method responds to bias deviations in

a similar manner to matched filter detection.

2.3.4 Range Gain and Bias Estimation. Estimation theory methods at-

tempt to directly fit a scaled and shifted version of the output pulse to the recorded

data and iteratively locate the pulse position giving the least-mean-squared error

(MSE). This type of algorithm requires searching through all pulse locations under

consideration and is more time intensive than other implementations, but can esti-

mate object ranges outside the sampled window and multiple return locations. The

range-gain-bias (RGB) estimation method derived by Burris [1], uses a three term

model based on an inverted parabola pulse shape with an initially unknown gain,

location, or bias level. The pulse model, I(tk, xn, ym), is shown in Equation (2.6).

The gain term, G(xn, ym), scales the pulse-shape model, which is truncated by

a shifted rectangle function, rect(f(tk)), with a pulse half-width, pw, in seconds mul-

tiplied by the speed of light, c, to preclude negative pulse values. Noise in each voxel

is modeled by the q(tk, xn, ym) function. An average bias, B(xn, ym), is estimated for
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each test location by using the mean of all of the sampled data outside the postulated

pulse. Both the gain and bias terms are solved using an estimated range

I(tk, xn, ym) = G(xn, ym)
(
1− (R(xn,yn)−tkc)2

(cp2
w)

)
rect

(
R(xn,ym)−tkc

2cpw

)
...

... + B(xn, ym) + q(tk, xn, ym) (2.6)

Bias level averaging makes this method tolerant of signal deviations outside the

returning pulse, so long as the actual return pulse has higher amplitude than any

deviation [1]. If the signal deviates during the pulse, the shape of the pulse and the

resulting range estimate will be skewed. Random noise introduces ambiguity in the

pulse shape, and thus the range estimate.

2.4 Signal Error and Ranging Summary

Throughout the course of its transit, the LADAR signal has deviated signifi-

cantly from its desired form. Random error has entered from the laser pulse generation

process, atmospheric speckle, photonic arrival, APD gain noise, and read-out noise.

The signal has also been systematically deformed by the target’s range profile in the

IFOV, the optical system’s PSF and aberrations, detector non-uniformity, and read-

out amplifier non-uniformity. These error sources are intrinsic to the device, and must

be dealt with by the ranging algorithms to produce an accurate range estimate.

Ranging methods including peak detection, matched filtering, Richardson-Lucy

deconvolution, and a Range-Gain-Bias estimation method were examined. Since all

four methods are fundamentally deconvolution methods, a linear time invariant (LTI)

model for the recorded signals was intrinsically assumed.

In their generally accepted forms, none of the error sources or ranging models

explain the anomylous signal behavior observed. However, the signal flow and LTI

requirements for accurate ranging provide an insight into a refined system model

which can explain the anomylous behavior and ranging errors.
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III. System Model

3.1 Model Hypothesis

Based on observations from Figure 1.5 and Figure 1.6 and the results of the evo-

lution of error analysis, all of the assumptions indicated by the original system model

may be erronious. First, the ringing response and pulse width variation observed in

Figure 1.5 indicate a non-negligible detector impulse response. For the original model,

a non-negligible impulse response indicates that the APD and amplifier responsivi-

ties are not constant valued between samples in the record. Thus, the required NUC

coefficients are effectively changing during the record and introducing a systematic

error. Finally, the correlation between devices which have no common photonic input

means that the detectors in the array are not independent. Based on this hypothesis,

a refined model of the system is presented.

3.2 Proposed System Model

The following system model is presented to indicate the relationship between the

key components of the system, as they relate to the APD gain. The model provides

a framework for determining the system behavior, which results in gain variation. It

also assigns the time dependence and nonlinearity exhibited by the system to distinct

components, so these factors can be removed and the residual system identification

problem solved.

A proposed functional model of the system can be seen in Figure 3.1. The

photons incident on each pixel are multiplied by a gain term to yield a number of

electrons, which flow as current to the integrating capacitors of the ROIC [17]. The

sum of each pixel’s current demand is fed back to the voltage regulator to produce the

bias voltage which drives the APD gain equation shown in Equation (3.1). The charge

stored in the integrating capacitors is resistively converted to voltage and passed to

an analog-to-digital converter to produce the digital photo-counts which are stored in

the system’s memory.
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G =
1

1−
(

VBias

VBD

)p (3.1)

The configuration of these components suggests that a parameterized model of

the system could be developed, but some information is missing. While the voltage

regulator is expected to be a closed loop control device of the proportional integral

derivative (PID) type, its system parameters are unknown. The network through

which the current demand is converted back to a reference voltage for the voltage

regulator is also unknown, but assumed to be a resistive-capacitive (RC) rather than

purely resistive network [8]. Additional uncertainty is added by the RC network of the

integrating capacitors and analog-to-digital converters, since the only data available

is the output recorded by the system after analog-to-digital conversion. Models for

the APD gain, voltage regulation process, and ROIC are presented in greater detail

in sections 3.3, 3.4, and 3.5.

Figure 3.1: Proposed system model diagram
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3.3 APD Model Details

Fundamentally, an InGaAs APD is a highly reverse biased PN junction, which

is approximately thirty percent quantum efficient. When a photon, of the correct

wavelength, is incident on the junction an electron-hole pair is excited out of the

depletion region. The strong reverse bias causes these carriers to accelerate and gain

enough kinetic energy to excite new carriers by impact ionization as they leave the

depletion region. These additional carriers, which are generated from one photon,

constitute the APD gain. The number of carriers generated depends on the physical

parameters of the device affecting the carrier extinction ratios and on the reverse bias

voltage applied across the diode [3]. The empirically derived Miller’s Equation is used

to directly relate the APD gain to the applied reverse bias voltage, .

Miller’s Equation, shown in equation (3.1), indicates that the average gain, G, is

a function of the reverse breakdown voltage, VBD, the reverse biasing voltage, VBias,

and an empirical scaling factor, p. The reverse breakdown voltage is a physical

parameter of the device, although it can vary with temperature [19]. The scaling

factor is found by solving equation (3.1) for p using known values for the voltages

and gain. In this case, equation (3.1) yields a scaling factor value of 5.48. The results

of equation (3.2) can then be used to determine the gain resulting from a given reverse

bias and breakdown voltage.

G =
1

1−
(

VBias

VBD

)p (3.2)

3.4 Voltage Regulator Model Details

The reverse bias voltage is provided to all of the APDs in the array by a single

fast transient response voltage regulator. This device can be simply viewed as a

current controlled voltage device. It provides a stable output voltage, when a stable

current demand is placed on it. However, when the current demand varies, the device

has a transient response during which the voltage will not be maintained at its set
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level [12]. For the FLASH LADAR, the current demand on the voltage regulator

varies with the photocurrent of the entire array, since all of the APDs are biased by

the same regulator.

The following example is given as justification for modeling a variable voltage

regulator output. The published dark current for one pixel of a developmental version

of the device is 14.4-nA [2]. Under constant dark conditions, the current load required

by the entire array would be 16384 times this amount, or 0.236 mA. If a scene were

illuminated by a pulse from the specified Big Sky CFR-400 laser, which outputs 7 mJ

of energy per pulse, the current demand must increase during the pulse return.

The radiometric calculations required to determine the photonic input to the

system for a test board 80-m away progress in the following manner. The vertical

and horizontal half angle FOV for an f/2 lens, with a 6.4-mm wide detector, is 32-

milliradians. At 80-m this corresponds to viewing an area 5.122-m x 5.122-m. In the

data set available for analysis, the target board is centered in the FOV and covers a

2.43-m x 2.43-m square area.

Presuming the laser was focused such that the designed FOV was covered by the

first two standard deviations of the pulse’s spatial Gaussian distribution, 43-percent

of the transmitted flux is incident on the target board. The white board is presumed

nominally 10-percent reflective and Lambertian, so the 10-cm collecting optic of the

receiver collects only 6.71 ∗ 10−7-percent of the transmitted pulse or 4.7-nJ. For this

example, the APD gain is temporarily assumed to be constant at a value of 10. Using

a 5-range sample full width half-max for a 7-range sample pulse indicates that the

central 5-range samples of the pulse contains 52 percent of the temporal pulse energy.

Therefore, the mean current demand on the entire array, during the 5-range sample

central period is 984-mA, assuming 30-percent quantum efficiency. Therefore, during

this pulse return, the current demand increased by a factor of 4169 over the dark

response level.
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The specific voltage regulator could not be identified or removed for testing, but

it is unlikely that device will be able to compensate for a 984-mA demand swing in

5-ns, without deviation. Therefore, the supplied reverse bias voltage will vary under

optical loading. The time scale of the sampling operation ensures that the transient

responses will be present in the data, even though the voltage regulator attempts to

maintain a constant reverse bias voltage.

3.5 ROIC Model Details

Each APD in the array is multiplexed to a set of twenty integrating capacitors.

During data collection, photo-current and noise current from the APD sequentially

charges these capacitors for a period less than the 1.862-ns switching time. Upon

demand, the capacitor charges are serially recorded through an amplifier and analog-

to-digital converter to system memory as a digital count. The series of digital counts

recorded from the integrating capacitors represents the irradiance on that APD at

the time of recording. The spatial composite of all the pixels’ records form a frame

of data.

For each frame of sular mode data, a laser pulse is triggered and a detector

at the laser’s aperture monitors the actual pulse output from the laser. When the

output is detected, the LADAR’s internal clock begins cycling and the detector array

is activated and begins cyclically over-writing its capacitor charges. Once a time delay

corresponding to the selected range has elapsed, the detector array is deactivated and

the integrating capacitor values are recorded to memory introducing readout noise [2].

The amplifier and A/D conversion process produce current values whose units

are not in terms of photo-electrons, due to the various scaling factors. For specific am-

plifier and reference reverse bias voltage settings, the system can be calibrated against

a known radiometric source to produce true photo-electron counts. The gain variation

phenomenon significantly complicates this calibration procedure. Fortunately, having

this exact relationship is not necessary for ranging.
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3.6 Model Implications

The first major implication of the proposed system model is nonlinearity. If one

record is taken under ambient lighting conditions, a certain photonic load is induced

on the system, and the reverse bias voltage varies. If a second record is taken at

a brighter ambient condition, a greater photonic load is incident, and the reverse

bias voltage varies in a different fashion. Since Miller’s equation is nonlinear with

respect to reverse bias voltage, the difference between the two records is not the

linear difference of the incident light levels. Even dark current subtraction must be

treated with caution, because the dark current is also a function of the APD gain.

However, with incident photons only due to self emission of the optics and a lens cap,

it is the most linear signal which can be measured under field conditions.

For any ranging situation of interest in a military application, there are always

at least two inputs. The ambient light from the scene sets the reverse bias voltage,

and thus the gain, in motion prior to any returning laser pulse’s arrival. Even if the

gain behavior during the pulse’s arrival is completely dominated by the detector’s

response to the pulse, the initial gain value is not constant in range. Therefore, the

system’s response to the laser pulse is not shift-invariant.

The resulting nonlinear time-variant ranging response complicates both data

processing and ranging. If the dark response is taken as a linear value, it can be

subtracted from a pulse illuminated response, in order to remove additive fixed pattern

noise, but the ambient response cannot be subtracted. The effects of the system wide

gain fluctuation due to optical loading must also be removed from pulse illuminated

records, to produce a linear time-invariant signal for range estimation.

3.7 Residual System Identification

A mathematical model is available for the nonlinear average APD gain, and

a second-order closed-loop PID model is proposed for the voltage regulator plant.

However, no information is available regarding the actual PID parameters of the
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voltage regulator or the presumed RC network resulting from the biasing arrangement

of the ROIC. Additional effects from the analog-to-digital conversion are intrinsically

recorded in the system’s output, which must also be removed prior to considering

the system’s response. Since the system cannot be disassembled to directly measure

component responses, a system identification problem remains.

An iterative approach is used to sequentially remove the effects of the ROIC,

time variance, and nonlinearity to examine the closed loop relationship between the

current demand on the voltage regulator and the reverse bias voltage provided. An

impulse response for the voltage regulator is the desired result, if the current demand

and bias voltage are known [13]. Once the response of the voltage regulator is known,

it can be coupled with Miller’s equation and an iterative process to predict the sys-

tem’s response to a known photonic input which can vary in time on a pixel-by-pixel

basis.
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IV. Model Development and Intermediate Findings

4.1 Introduction

This chapter describes the process of exposing and identifying the underlying

voltage regulator behavior, which is responsible for the APD gain variation and time-

variant system behavior. Intermediate system response findings are examined, and

data analysis process improvements are suggested where appropriate. The experiment

is presented in its signal flow order, in this case from the noisy recorded output back

to the photon detection process.

4.2 Random Error Suppression

The device manufacturer, ASC, suggests that the dominant random noise source

in the system is read-out noise, which is typically GWAN [2]. This assertion is sup-

ported by the 537-Mhz sampling rate and associated analog-to-digital conversion pro-

cess to reach 200-Hz image sampling across the array [1]. This random noise distri-

bution can be observed without consideration of the proposed nonlinear time-variant

model.

The probability distribution shown in Figure 4.1 is derived from the presumption

that the mean of one hundred records of the same range slice represents the true

image, and deviations from this value at each pixel represent random noise. Since

this frame is an actual laser pulse return, it is expected to have a contribution from

the Poisson photonic detection process and the GWAN digitization and read-out

process [1]. While this distribution is not a perfect fit to a Gaussian, the Gaussian

form appears to dominate the noise behavior. Were this not the case, the symmetry of

the distribution would be further distorted, unless the Poisson lambda value exactly

equalled the mean GWAN value.

Multiple frame averaging is used to suppress the random error, from all sources,

in the data collected for this work. While other filtering methods are necessary for

military applications when the target cannot be imaged multiple times, these are not

pertinent to the development of the model. The signal to noise ratio can be improved
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Figure 4.1: Illuminated scene noise distribution

by a factor of ten for signals with GWAN by simply averaging one hundred frames.

This amount of averaging appears to suppress random error effects sufficiently to

proceed with systematic error suppression.

4.3 ROIC Systematic Error Suppression

The systematic error contribution of the ROIC is generally modeled as a mul-

tiplicative gain variation between amplifiers and an additive offset for each amplifier.

A multiplicative and additive response is also present due to the individual APDs in

the arrays. Because APD responsivity variation is under investigation, amplifier gain

variations cannot be evaluated at this stage of the model. However, the additive offset

terms can be examined when the APD multiplicative term is acting on a near-zero

value.

In order to introduce a minimum of photonic input, a series of frames was taken

with the lens cap on the flash LADAR’s optical system. Even in this dark condition,

some electrons will be released by the APD due to photons from self-emission of the

optical components and casing, as well as thermal effects within the APD itself [3].
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As previously indicated, the mean individual APD dark current was 14.4-nA prior

to read-out amplification for a developmental version of this device [2]. The dark

response current demand is as low as it can be made for the system, and the smallest

possible gain variation due to optical loading is experienced. Therefore, the results

will be attributed to the ROIC as an additive component.

The additive components from the dark response represent fixed pattern noise

in the data cube, the values of which vary both by pixel and by range sample. A series

of dark response measurements at increasing range delays was taken and the averaged

results for one pixel with error bounds are shown in Figure 4.2. The pattern of the

recorded value is clearly repeated, but its amplitude increases with increasing range.

During the recording time, the incident photons and dark current from the APDs

cannot be fluctuating in a consistent enough manner to demonstrate this behavior

after averaging. If this was the result of thermal build-up, the responsivity would

have decreased as the system warmed up, rather than increased. Further justifica-

tion for assigning the additive offset values to the ROIC can be found by examining

the variance around the mean values. Once again, a relative frequency probability

distribution indicative of GWAN is observed in Figure 4.3, with even less symmetry

distortion than the illuminated case shown in Figure 4.1.

For the dark response case, the APD gain has been assumed to be as close to

constant valued and LTI as it can be in operation in this system. The additive fixed

pattern noise attributed to ROIC is also assumed to be the product of an LTI process.

Therefore, any illuminated data cube represents a sum of the fixed pattern result and

the output of the non-LTI system response under optical loading. If this is so, it is

mathematically valid to subtract fixed pattern noise, which never entered a nonlinear

process, from an illuminated result.

It is important to note that it is not strictly appropriate to subtract an illumi-

nated data cube from another illuminated cube, such as a record of the same day-lit

scene with and without a laser pulse present. When the pulse is active, the laser pulse
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Figure 4.3: Dark response noise distribution
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and ambient photons are linearly added before entering the nonlinear time-varying

process, then the fixed pattern noise is added to the result. If an ambient data cube is

subtracted from a pulse illuminated data cube, the additive pattern noise is removed,

but the remaining signal is deformed by subtracting the final results of two nonlinear

time-varying processes. Therefore, only dark responses, or ambient responses ap-

proaching the dark response, should be directly subtracted from illuminated data to

remove additive fixed pattern noise.

4.4 Time Variance

The time variance of the system is the next obstacle to be overcome, in order

to examine the voltage regulator response. The proposed model indicates a system

which is time variant, in that each pixel contributes to the system’s current demand

according to when photons are incident upon that pixel. Likewise, the scale of each

pixel’s contribution to the total current demand depends upon the gain factor, which

varies in time according to the total current demand and system response.

Since the time variant response arises from pixels demanding photocurrent at

different times, the time variance can be suppressed by exposing the entire array to

an input with uniform time varying behavior. A step input across the entire APD

array is a simple and direct method of achieving this result. If the APD array is

exposed to a constant irradiance, but no reverse bias voltage is applied, no photon

driven output response is expected. As soon as bias voltage is applied, the output will

begin responding to the irradiance on the detector. Thus, the application of reverse

bias voltage effectively generates an approximate step input response from a constant

irradiance.

A halogen lamp with a hemispheric reflector was used to provide an approx-

imately constant photon exposure on each pixel. Radiometry indicates that there

will be variations in irradiance between pixels due to the physical orientation of the

lamp and the flat array [3]. However, with the time variance suppressed, the average

response of the APD array to an average irradiance can be determined as if it were

32



a single time invariant detector. This result allows the system response to be further

evaluated.

4.5 Time Concatenation

Figure 4.4 indicates that the APD array is biased at the initial activation for each

frame, rather than just prior to recording. Therefore, concatenating successive records

can be exploited as a method to record a longer response than a single frame, and

provide a much more accurate overall system response measurement. Concatenation

is shown not only to be viable, but to indicate another source of systematic error

which otherwise would not have been detectable.

A series of fifty-four dark responses at successively increasing range delays and

fifty-four corresponding illuminated responses were recorded. One hundred frames

were taken for each record and averaged to improve the signal-to-noise ratio. Each

dark response record was subtracted from its corresponding illuminated record and

the results re-ordered to reflect their proper temporal order.

Each record has an associated start delay distance which is recorded down to

one-quarter foot intervals. For alignment, each record was up-sampled by a factor of

four and shifted by integer increments to its indicated start location. The results are

shown in Figure 4.5.

As expected, each pixel’s records did not overlay perfectly, as shown for three

records in Figure 4.6. The beginning of each successive record appears to be attenu-

ated compared to the previous record at the same range, but agrees well later in its

record. However, the overall form of the overlaid records indicates that concatena-

tion is possible, if a peak value envelope is taken to represent the signal’s true form.

Beginning with the second record for each pixel, the maximum value of each record

was retained in its area of overlap with the following record.

The averaged concatenated record from 1089 pixels near the center of the array

was taken to represent the average system response to a step input. This average
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Figure 4.4: Halogen lamp illuminated responses minus dark respones for ranges a.
0-ft b. 9.25-ft c. 18.5-ft d. 27.75-ft
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Figure 4.5: Overlay of illuminated conditioned responses for fifty-four ranges.
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Figure 4.6: Overlay of three conditioned illuminated response records

result, seen in Figure 4.7, shows improved smoothness when compared to individual

records, due to the resulting attenuation of any discontinuities in the overlap region

specific to one pixel’s set of records. After further interpretation, this signal was used

to determine the voltage regulator response.

4.6 Overlap Deviation

The consistency of the overlap error between records prompted further exam-

ination of the effect. In the absence of concatenation, no indication can be had as

to what the expected value at a certain range sample should be. However with the

signals concatenated, it is hypothesized that the trailing portion of each record rep-

resents the true value. Since additive fixed pattern noise from the ROIC has already

been removed, the deviations of the leading portion of the records are hypothesized to

be the results of a multiplicative process. Based on this hypothesis, Figure 4.8 shows

an average multiplicative correction factor for the overlapping region, as well as the

standard deviation associated with this average at each point.
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Figure 4.7: Concatenated record maximum value envelope

In light of the dark current’s increasing baseline value over time, an analysis

of the temporal behavior of the overlap deviation was also conducted. No trend was

identified regarding the behavior earlier or later in the sequence, as it was for the

recorded dark current values. Rather, the overlap deviations of those range samples

which occurred prior to the expected start time of the step-like input were found to

have a higher variance and behavior less consistent with the averaged values than

range segments which occurred later.

Due to the consistency of this factor through 1089 pixels and 53 overlapping

regions, it is recommended that this factor be applied to recorded data even in the

absence of record concatenation. If it is not applied, the beginning of a record will

be attenuated and any pulse return shape modified by the inverse of the correction

factor. This type of deviation will cause most sub-sampling time increment range de-

termination algorithm estimates to indicate an object more distant from the LADAR

than its actual range.
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4.7 Time Domain Data Interpretation

Thus far, an output response to an approximate photonic step input has been

conditioned and concatenated. This result is re-interpreted to allow the nonlinear

process to be removed and find a linear system relationship between the current

demand and the reverse bias voltage. The following process was used to determine

the reverse bias voltage and current demand during the record.

The output record represents the charge stored in the integrating capacitors

after analog-to-digital conversion, and therefore goes as the current demand placed

on the voltage regulator. This result is best kept in its unmodified form, because

the analog-to-digital converter introduces scaling and includes lower and upper bound

limits which can significantly effect how a given capacitor charge is interpreted. It also

means that this result must be re-derived if the analog-to-digital conversion settings

are changed.

The photon input demand is presumed constant throughout the record, since

the detector was illuminated by a lamp rather than a pulse. In accordance with the

proposed system model, all of the system feedback is presumed to enter the recorded
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output via gain variation. Therefore, if properly scaled, the result shown in Figure

4.7 represents the gain variation in time, when the system is exposed to a photonic

step input.

A digital count value must be chosen which represents the system operating at

its designed gain value, and several interpretations are possible, depending upon the

voltage regulators startup behavior. It is possible that the gain oscillates around the

desired value near the end of the record shown in Figure 4.7. It is also possible that

the rise time of the voltage was fast enough that the slight knee in the first oscillation

at sample two actually represents the desired gain and that the system could not

deliver enough current to maintain the desired value in the steady state. Having no

compelling evidence at this point for either case, both are retained for evaluation.

If the reverse breakdown voltage for the APDs is consistent and known, equation

(3.1) can be solved for the reverse bias voltage. While Sensors Unlimited indicated

very consistent reverse breakdown voltages during the development of the APD array,

a definitive record of the reverse breakdown voltage of the final device is not available

[2]. Lacking this information, the reverse breakdown voltage listed for a developmental

device was used as an estimated value.

Both possible reverse bias voltages and both postulated desired gain scaling

points were examined. It was found that using the software set value with the desired

gain point set at the knee resulted in a modeled reverse bias voltage with an imaginary

component, when the gain fell below one. With the reference voltage set one volt below

reverse breakdown, the reverse bias voltage model yielded imaginary values when the

reverse bias voltage became greater than the reverse breakdown voltage. Therefore,

only two of the permutations were evaluated. In the first case, the reverse bias voltage

was set one volt below the reverse breakdown voltage, with the gain point set at the

knee. In the second case, the reverse bias voltage was set at the software recorded

value with the gain point set at the mean of the final two hundred samples considered.
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VBias = VBD

(
1− 1

G

) 1
p

(4.1)

VD = Vref − VBD

(
1− 1

G

) 1
p

(4.2)

Using the developmental reverse breakdown voltage, equation (3.1) is solved for

the reverse bias voltage, as shown in equation (4.1). To strictly indicate the control

relationship between the reference, Vref , and the actual reverse bias voltages, the

reverse bias voltage is redefined as the reference voltage minus a voltage variation,

VD, in equation (4.2). Each of the postulated gain variation records is then used as

an input to equation (4.2) yielding the reverse bias voltage deviation which must have

given rise to the recorded gain variation.

After scaling the data to a gain profile, calculating the voltage deviation re-

quired to produce that gain, and assigning the current demand to be proportional to

the digital count, two signals for each case are available for analysis. The resulting

current demand and the reverse bias voltage deviations under consideration are shown

in Figure 4.9. These results represent the input and output of the voltage regulator,

presumably a linear time invariant system. Any transfer function or difference equa-

tion resulting from theses values must be used with a certain caution, because the

input signal has limited frequency content. For instance, the high frequency content

of an impulse or step response cannot be recreated accurately from these signals. For-

tunately, the signals of interest are the convolution of a smoothly varying pulse shape

with a target shape which will tend to elongate the return. With this caveat, the

signals were used as input and output conditions for a system identification process.

4.8 Linear Constant-Coefficient Difference Equation

Since the input and output signals of the unknown system are discrete, and

a significant time history is available, linear constant-coefficient difference equations
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Figure 4.9: a. Case 1 current demand b. Case 1 voltage deviation c. Case 2 current
demand d. Case 2 voltage deviation

(LCCDE) can be used for system identification. The difference equations take the

form of equation (4.3) where x terms are input values and y terms are output values at

successively delayed indexes. This relationship is solved for equation (4.4) to predict

the next output value from a series of known past input and output values [11].

x(n) + b1x(n− 1) + ... + bqx(n− q) = y(n) + a0y(n− 1) + ... + ary(n− r) (4.3)

y(n) = x(n) + b1x(n− 1) + ... + bqx(n− q)− a0y(n− 1)− ...− ary(n− r) (4.4)

An entire set of coefficient values is found by solving a system of LCCDEs

relating past known input and output values to predict the current output value

using a fixed number of input and output coefficients. Initial conditions, for the

system of equations, are taken as zero for the current demand and reverse bias voltage
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deviation values. The number of coefficients indicates the overall order of the system.

Algebraically, this would lead to a great deal of manipulation for a large number of

coefficients.

Linear algebra can be used to simplify the solution by preparing an appended

matrix of input terms, output terms and an identity matrix and then finding the

reduced row echelon form of the entire matrix [11]. Equation (4.5) shows an example

with three input coefficients in x and two output coefficients in y. The sixth column

contains the current output values, in this example.




0 0 x(1) 0 0 y(1) 1 0 0 0 0

0 x(2) x(1) 0 −y(1) y(2) 0 1 0 0 0

x(3) x(2) x(1) −y(2) −y(1) y(3) 0 0 1 0 0

x(4) x(3) x(2) −y(3) −y(2) y(4) 0 0 0 1 0

x(5) x(4) x(3) −y(4) −y(3) y(5) 0 0 0 0 1




(4.5)

After solving for the reduced row echelon form, the coefficient values for each

position are found in the place of the previous current output values. In this example,

these values appear in the sixth column. The appended identity matrix now contains

the inverse matrix of the input and output values [11]. This result is shown in equation

(4.6).




1 0 0 0 0 b0 I11 I12 I13 I14 I15

0 1 0 0 0 b1 I21 I22 I23 I24 I25

0 0 1 0 0 b2 I31 I32 I33 I34 I35

0 0 0 1 0 a1 I41 I42 I43 I44 I45

0 0 0 0 1 a2 I51 I52 I53 I54 I55




(4.6)
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4.9 LCCDE Solution

Since the system order is unknown and the solution time for a given matrix

is short, an error optimization method was used to determine how many coefficients

should be used. The matrix solution was found for one to two-hundred input co-

efficients and one to two-hundred output coefficients, then the known input values

were processed recursively by the derived difference equation. The error between the

recorded output voltage signal and the recursively derived output signal was found

and recorded. Finally, the set of coefficients which produced the smallest error was

selected as the coefficient set for the system model.

The final output system model for Case 1 has ninety input and thirty-nine

output coefficients, while the model for Case 2 has one hundred and forty-one input

and fifty-five output coefficients. The results of reconstructing the reverse bias voltage

deviation records are shown in Figure 4.10.

50 100 150 200

−2

−1

0

1

2

3

4

5

Range Sample

V
ol

ta
ge

 (
V

)

a

 

 
Recorded
Reconstructed

50 100 150 200
−10

−5

0

5

Range Sample

V
ol

ta
ge

 (
V

)

b

 

 
Recorded
Reconstructed

Figure 4.10: a. Reconstructed voltage deviation for case 1 b. Reconstructed voltage
deviation for case 2
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V. Model Validation

5.1 Forward Process

Based on the system response derived in section 4.9, a direct iterative process

is used to predict the result recorded by the system for a known true photon arrival

distribution in time, using the following assumptions. First, initial conditions of zero

in voltage variation and current demand are assumed for a set of samples as large as

the largest number of filter coefficients. Second, the initial gain is presumed to be the

empirically derived value for the ideally regulated reverse bias voltage.

The current demand at the time index, k, is determined by multiplying the sum

of the photon arrival count, P (q, r, k), for each pixel at the time index by the gain,

G(k), at the time index.

iD(k) = G(k)
128∑
q=1

128∑
r=1

P (q, r, k) (5.1)

Then, the voltage variation for the time index which arises from all previous

voltage variations and current demands is recursively calculated using equation (5.2).

VD(k) = ID(k)+b1ID(k−1)+ ...+bzID(k−z)−a1VD(k−1)− ...−azVD(k−z) (5.2)

The resulting voltage variation at the time index is then used in equation (3.1)

to determine the gain for the next time index. This process is repeated until the

known photon arrival values are exhausted, and a gain profile has been calculated for

the entire record length. Given that only a forward process is proposed, a limited test

case is required for which the true photon arrival distribution is known.

5.2 Forward Simulation

If the system model is valid over its range of assumptions, the best measure of

its performance is its ability to recreate the gain variation experienced by a simple test
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case. Unfortunately, the test cases available for comparison were limited to data taken

on previous collections. Since no cases were available for a single surface occupying the

entire FOV, a compromise case was selected. The derived noise reduction procedures

were applied to the recorded data and the RGB estimation method was used to

determine range values using the original and modified system models.

The test scenario consists of a two-surface target boards, the ground, the am-

bient lighting conditions, and some foliage near the end of the range record. While

not ideal, this data set was taken at night, minimizing the gain variations due to the

system’s initial step response when exposed to ambient light. The return from the

ground and vegetation causes some deviation from the modeled case, and the laser

pulse shape is not precisely recorded. An additional obstacle is the lack of a record

of the target surface separation or true target range for this data set.

Following the procedure for additive fixed pattern noise removal developed in

section 4.5, a dark response measurement for the range delay of the test data set was

taken. Both the dark response and recorded data set consisted of one-hundred frames.

Therefore, random noise suppression on par with the model development values was

achieved through frame averaging. The averaged result of the dark response was

subtracted from the averaged illuminated frame to generate the final frame for the

ranging algorithm.

The RGB estimation theory method was selected as the ranging algorithm for

the test. This selection was due to its simplicity of implementation and relevance

to ongoing research. The algorithm was run on the recorded data set in its original

form with a resolution of 1/30 of a range sample, or approximately 2-cm, and on the

recorded data modified by a varying gain profile at the same resolution. To derive a

gain profile, each pair of postulated inverted parabola amplitudes and locations was

used as a true photonic input into the non-LTI system model. Thus, the gain profile

was different in each iteration, depending upon the hypothesized ranges of the target

surfaces.
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The photonic scaling for the input parabolas was somewhat arbitrary, being

based on previously calculated radiometric values for the target. For the purposes of

the model, as long as the photonic pulse amplitude is the correct factor greater than

the bias photonic level, the scaling factor in the ranging algorithm will rescale the

results to match the digital count record. The photonic bias level was taken from the

background recorded mean and the photonic pulse scaled accordingly. Since the front

and back surface areas of the test target exposed to the LADAR were of approximately

equal area, the total photon input was modeled as the sum of two pulses. This total

photon input was run through the forward process described in section 5.1, and the

results used to calculate the MSE for each postulated location.

The algorithm was run for both the Case 1 and Case 2 coefficient sets. It was

found that using Case 2 coefficients produced an initial voltage variation due to the

first surface pulse which generated imaginary gain profile values. Therefore, Case 2

was dropped from consideration. The results for Case 1 are presented in Figure 5.1.

It is important to note that, while Case 2 was dropped, the Case 1 coefficients have

not been proven to be absolutely correct. Rather, the Case 1 coefficients are shown

to be the best model for the actual system response, of those under consideration.

A comparison of the pulse center locations, for Case 1, gives the following results.

The unmodified RGB estimation theory method indicated a first surface location of

range sample 6.36 and a second surface location of 9.06, based on a minimum MSE

of 5.747 ∗ 103-digital counts and 1.755 ∗ 104-digital counts, respectively. The RGB

estimation theory algorithm using the proposed system gain model in lieu of the

original bias estimation method yields a first surface location of range sample 6.46

and a second surface location of 9.16, with minimum MSEs of 3.922 ∗ 103-digital

counts and 5.955 ∗ 103-digital counts. The gain model system results in a factor of

1.465 improvement in the minimum MSE for the first surface, and a factor of 2.946

improvement in the minimum MSE for the second surface.
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Figure 5.1: a. Original model and data for first surface b. Original model and data
for second suface c. Modified model and data for first surface d. Modified model and
data for second surface

The results from the modified estimation theory method predict surface loca-

tions more distant from the LADAR than the unmodified method. This is in line with

the expectation that falling gain as a pulse arrives will tend to skew the pulse center

away from the detector. Even handicapped by the inability to postulate the gain

variation due to the return from the ground prior to the target, the MSE reductions

indicate a significant model improvement. This is particularly true for the second

surface, for which the gain behavior can be reasonably expected to be dominated by

the first surface return’s effects. Pulse reshaping is also evident in the closer fit of the

corrected pulse shape to the measured data, when compared to the uncorrected pulse

shape.

This experiment cannot show, due to the lack of an independent range mea-

surement, a definitive improvement in the range estimate for the test case. However,

it does show a significant reduction in MSE between the recorded data, and the

modeled pulse which determined the range estimate. At a minimum, the resulting
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improvement of the fit between the modeled and recorded data indicates the validity

of incorporating a varying gain component in the system model.
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VI. Conclusion and Recommendations

6.1 Primary Areas of Contribution

The primary contribution of this work is to explain and model the anomylous

behavior found in data from the AFLR/SNJM FLASH LADAR as a non-LTI gain

variation process. It was determined that background subtraction in illuminated

scenes must be used cautiously, due to non-LTI nature of the system. The use of dark

current subtraction to remove the additive offset component of each pixel and A/D

converter has been proposed as a means to reduce additive fixed pattern noise while

introducing minimal error. Finally, a responsivity variation, which is attributed to

the read-out amplifier, is identified and characterized.

6.2 Significance of Contribution

The significance of the forward model cannot be understated in regards to sub-

sample accuracy range determination algorithms, which are derived for LTI signals.

The gain variation introduces dependence between all of the pixels in the array, which

was neither expected nor modeled previously. In the face of pixel interdependency due

to gain variation and the optical system’s PSF, the achievable accuracy and resolution

of such algorithms can only approach the analytically derived values in very limited

cases.

If multiple range returns are to be interrogated from a single IFOV, the gain

variation must be removed. Otherwise, true multiple returns may be obscured by

the gain variation, and false secondary returns may be observed. Removing the gain

profile will also alleviate false ranges being applied to pixels observing targets outside

the range gate.

The modification of the background subtracting scheme represents a significant

refinement in the understanding of the system. The proposed dark response method

introduces less error than the original illuminated scene method, but does not address

the contributions of ambient light. To properly remove the ambient light contribu-
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tions, the ambient response must be recorded and linearized before subtraction from

a linearized pulse illuminated signal.

The amplitude scaling identified during record concatenation also effects ranging

accuracy, by non-uniformly rescaling the recorded returns. If only single records were

examined, this deviation would likely have been lumped into APD gain variation

rather than identified as a separate source of error.

6.3 Recommendations for Further Work

The first recommended continuation of this experiment relates to the Miller’s

Formula based APD gain term. The near steady state responsivity for a series of bias

voltages should be investigated to refine and scale Miller’s Equation for this device,

at fixed amplifier settings. This may be accomplished by exposing the detector to a

series of known input irradiances and concatenating a series of records at the longest

delays allowed by the system. This will allow the worst of the transient gain effects

to atrophy, and an average of the oscillating value may be taken as the desired value.

Making these measurements will answer with certainty where the gain set point lies

at the beginning of the record.

It may be possible to investigate the system’s response directly. A laser with

a pulse length much shorter than the range sampling time increment can be used

to generate an impulse like response. If the input pulse intensity is not too high,

the gain variation following the pulse may be visible even in dark conditions without

saturation. An extended record can be taken by fixing the laser pulse timing and

adding progressively more delay for recording in sular mode.

After refining the gain variation model, the next critical step to be taken is

to develop an approach to remove the effects of gain variation from the data. Two

methods present themselves. The first would be to directly measure the voltage

regulator value during recording. If this value were sampled by the ROIC, a refined

Miller’s Equation could be used to directly rescale the record. Alternately, an iterative
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method could be implemented based on the forward model developed in this work.

However, this method would require background and dark measurements of the same

scene prior to and including the range of interest and will likely prove impractical for

all but research tasks.
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Appendix A. Matlabr Code

A.1 Matlabr Code for data Process One

Listing A.1: Process1v1.m
%Process1v1.m load .seq data files from a fixed directory located ...

on
%line 63 and averages the results for the entire array . It also ...

calculates
%basic statistics on a limited set controlled by the prange vector...

in
%[1st row , last row , 1st col , last col] format . A series of ...

inputs are
5 %used to allow for partially corrupted data sets to be used.

clear all; close all; clc;
tic ,

10 %1. preparation for data loading %******************

disp(’Process set #1’);

N=108; %NUMBER of data files
15

Frames =100; %number of frames per file

FnT =108; % Total number of files

20 FnD =54; %Total number of data files . It is expected to be 1/2 the...
total since a dark
%current value is needed for each illuminated file.

gapinit =[0]; %gap in file positions for corrupted files - 0 for ...
none

25 gap=[ gapinit (gapinit -FnD)]; %overlap gap vector for conditioning ...
of runs which should not be processed due to later gaps

%adjudicate number of good files
if gapinit ~=0;

FnG=FnT -length(gapinit); %Number of Good files
30 else

FnG=FnT;
end;

%selction of pixel range under consideration
35 %[1st row , last row , first col , last col]

prange =[32 64 32 64];

row=prange (1):prange (2);
col=prange (3):prange (4);

40
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%initialize the pixel value matrix
Pmat=zeros(length(row)*length(col) ,2);

count =1;
45 for n=1: length(row);

for m=1: length(col);
Pmat(count ,1)=row(n);
Pmat(count ,2)=col(m);
count=count +1;

50 end;
end;

%find the number of pixels under consideration for basic ...
statistics

temp=size(Pmat);
55 pixels=temp (1);

%2. Load data for overall operations & segment evaluation
%********************************************************
for q=1:1: FnT; %incrment through number of files

60
if sum(gap==q)~=1; %if not a skip file , load data

[D,H,stop ,mark]= flash_read_seqv2(’d:\seal\data 10 -2 -06\’,[...
’seal100206run ’ num2str(q) ’.seq’]);

disp(num2str(q));
65

%initialize matrixes for this file
Dout(q).data=zeros (128 ,128 ,20);
Dout(q).varMat=zeros(pixels ,20);
Dout(q).meanMat=zeros(pixels ,20);

70 statdata=zeros(pixels ,20, Frames);

for r=1:1: Frames ; %increment through Frames
Dout(q).data=D(r).data+Dout(q).data; %add the data ...

for this frame to a total for this file

75 for n=1:1: pixels ; %increment through each pixel for ...
consideration
for m=1:1:20; %increment thru slices for each ...

pixel
statdata(n,m,r)=D(r).data(Pmat(n,1),Pmat(n,2),...

m); %compile statdata matrix
end;

end;
80 end;

Dout(q).data=Dout(q).data./ Frames ; %find overall data mean...
matrix

Dout(q).stop=stop; %record stop distance
Dout(q).pixels=Pmat; %record map of pixels for close ...

examination
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85 Dout(q).varMat=var( statdata ,[] ,3 ); %calculate variance ...
for each pixel under consideration down the frames

Dout(q).meanMat=mean( statdata ,3 ); %calculate mean for ...
each pixel under consderation down the frames

end;

90 pack;
toc ,

end;

95
%save the output results
save process1data Dout N Frames FnT FnG FnD pixels gap Pmat;

A.2 Matlabr Code for data Process Two

Listing A.2: Process2v1.m
%for those pixels for which basic statistics have been derived in ...

process1
%conduct a dark current subtraction and concatenate the values to ...

form
%a single long data run

5 clear all; close all; clc;

%show plots or not , 1 to show , 0 to not show
showplots =0;

10 %load data file
load process1data

%initialize a zeros matrix for each pixel
for m=1:1: pixels;

15 p(m).data=zeros(FnG ,20);
end;

%load values for each pixel into array
for m=1:1: pixels;

20 for n=1:1: FnT;
if sum(gap==n) <1;

p(m).data(n,:)=squeeze(Dout(n).data(Pmat(m,1),Pmat(m...
,2) ,:));

end;
end;

25 end;

%determine the stop points of the files
stoplist=zeros(1,FnD);
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30 for m=1:1: FnD;
if sum(gap==m) <1;

%multiply by 4 and round to insure integer values of ...
sampling of

%stops
stoplist(m)=round(Dout(m).stop *4);

35 end;
end;

%initialize a zeros matrix for each pixel
for m=1:1: pixels;

40 q(m).data=zeros(FnD ,20);
end;

%dark current subtractions
for m=1:1: pixels;

45 for n=1:FnD;
if sum(gap==n) <1;

q(m).data(n,:)=p(m).data(n+54,:)-p(m).data(n,:);
end;

end;
50 end;

clear p;
pack;

55 %initialize a zeros matrix for each re -ordered pixel
for m=1:1: pixels;

r(m).data=zeros(FnD ,19);
end;

60 %find the zero point & re -order
for m=1:1: pixels;

for n=1:FnD;
if sum(gap==n) <1;

index=find(q(m).data(n,:) <=1);
65 r(m).data(n,1:(20 - index))=q(m).data(n,( ( index +1) :20)...

);
r(m).data(n,(20- index +1) :(19) )=q(m).data(n,1:( index...

-1));
end;

end;
end;

70
clear q;
pack;

%initialize a zeros matrix for each pixel preparing for 4x interp
75 for m=1:1: pixels;

t(m).data=zeros(FnD ,77);
end;
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%interpolate each string so they can be aligned
80 for m=1:1: pixels;

for N=1:FnD;
t(m).data(N,:)=interp1(r(m).data(N,:) ,[0:.25:19] ,’pchip’);

end;
end;

85
%clear r;
pack;

%multiply scale for nanoseconds as a reference
90 x=(1.862/4) .*[ stoplist (1) :1: stoplist(FnD)];

%initialize a final data set variable
sdata=zeros(FnD ,length(x));

95 for m=1:1: pixels;
s(m).data=zeros(FnD ,length(x));

end;

%concatenate the data sets into one signal
100 for m=1:1: pixels;

for n=1:1: FnD;
if sum(gap==n) <1;

temp=t(m).data(n,:);
sdata(n,( stoplist(n) -5*n)+6:1:( stoplist(n)+76-5*n+6) )...

= temp;
105 %some hardcoded factors which should be consistent ...

with the
%overlap of contiguous files are present +76 , -5* ...

factor
end;
s(m).data=max(sdata (1:FnD ,1: length(x)) ,[],1);

110 end;
end;

pack;

115 if showplots ==1;
%form out the images of the values
for m=1:1: pixels ; %replace with pixels for full run

figure (1);
subplot (2,1,1);

120 for n=1:1: FnD; %replace with FnD for full run
hold all;
if sum(gap==n) <1;

plot ( ( stoplist(n) -5*n):1:( stoplist(n)+76-5*n), t(...
m).data(n,:) );

end;
125 end;
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title ([’overlays of pixel = ’ num2str(m) ’ position = ’ ...
num2str(Pmat(m,1)) ’,’ num2str(Pmat(m,2))]);

xlabel(’samples ’); ylabel(’photo -electron counts ’);
hold off; axis tight ; grid on;

130 axis ([0 1767 0 1200]);

subplot (2,1,2);
plot(x,s(m).data); axis tight ; grid on;
title ([’concatenation of pixel = ’ num2str(m) ’ position...

= ’ num2str(Pmat(m,1)) ’,’ num2str(Pmat(m,2))]);
135 xlabel(’nanoseconds ’); ylabel(’photo -electron counts ’);

axis ([0 912 0 1200]);
set(1,’Position ’ ,[ -3 39 1280 915]);

pause;
140

close (1);

end;

145 end;

%save process output
save process2data s x t r pixels

A.3 Matlabr Code for data Process Three

Listing A.3: Process3v1.m
%This process is run after a series of data sets are concatenated
clear all; close all; clc;
%determine the impulse response from a composite step response

5 load process2data

%averaging concatenated data sets

data=zeros(1,length(s(1).data));
10 for n=1: pixels;

data=data+s(n).data;
end;
data=data./ pixels;

15 save process3data h data

A.4 Matlabr Code for data ABhderiveknee2
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Listing A.4: ABhderiveknee2.m
%control input simulation including inverse filtering operations

clear all; close all; clc;

5 load process3data;
clear h;

%downsample the data back to the original scale , this will ...
introduce

%some interpolated values.
10 data=resample(data ,1,4);

%set the input value as being the value after division by
%the initial gain , case #1 in the main document
p=5.48;

15 Vref=XX; %actual value removed for public release
Vbd=XX; %actual value removed for public release

%initial gain calculation
M1=1/( 1 - abs(Vref/Vbd)^p );

20
%setting input scale to mean in initial values & initializing gain...

record
scale=mean(data (2))/M1;
input =[ scale*ones (1 ,426)];

25 M=data (1:426) ./ input (1:426);
Mhold=M(2:425) ; %dropping first artifact value

%Vg is the voltage deviation
Vg=Vref -Vbd .*(1 -1./ Mhold).^(1/p);

30
Vghold=Vg;

%Alist =[90:1:92] , Blist =[36:1:40] to recreate known values
Alist =[1:1:200];

35 Blist = [1:1:200];

k=1; %additional sequence delays
q=1;
tic;

40
%increment through the LCCDE solution in matrix form

for index1 =1:1: length(Alist);
for index2 =1:1: length(Blist);

45
Acof=Alist(index1);
Bcof=Blist(index2);

%the zeros assignment is critical for this method to work
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50 %also I_d goes as M, but multiplied back to the data ...
values &

%assume that every pixel saw the average for the demand
Id=[zeros(1,floor(max(Acof ,Bcof)+min(Bcof ,Acof)/2)) Mhold*...

scale *(128^2) ];

Vg=[zeros(1,floor(max(Acof ,Bcof)+min(Bcof ,Acof)/2)) Vghold...
];

55
%initialize the matrix to be solved via RREF
Ms=zeros(Acof+Bcof ,2*( Acof+Bcof)+1);
%assign identity matrix values
Ms(1:( Acof+Bcof) ,(Acof+Bcof +2) :(2*( Acof+Bcof)+1))=eye(Acof...

+Bcof ,Acof+Bcof);
60 count =1;

%assign previous input & output values
for n=(k+max(Acof ,Bcof)):1:(k+max(Bcof ,Acof)+Acof+Bcof -1);

Ms(count ,1:( Acof+Bcof +1))=[Id(n:-1:(n-Bcof +1)) -1*(Vg...
(( n-1):-1:(n-Acof))) Vg(n)];

65 held(count).Ms=Ms;
count=count +1;

end;

%solve the system of equations
70 Ns=rref(Ms);

%extract the coefficients
B=Ns(1:Bcof ,(Acof+Bcof +1));
A=[Ns((Bcof +1):(Bcof+Acof) ,(Acof+Bcof +1)) ’]’;

75
%regenerate the test input from the linear difference ...

equations
y2=[Vg(1: Bcof) zeros (1 ,400)];
x2=Id;

80 %iterative forward solution
for n=(1+ max(Acof ,Bcof)):(400);

y2(n)=sum(x2(n:-1:n-Bcof +1).*B’)-sum(y2(n-1:-1:n-Acof)...
.*A’);

end;

85 start=length ([Vg(1: Bcof) zeros(1,floor(max(Acof ,Bcof)+min(...
Bcof ,Acof)/2))]);

%error calculations & saving coefficient information
output(q).error=mean ( (y2(start :400) -Vg(start :400)).^2 );
output(q).A=A;

90 output(q).B=B;
output(q).Acof=Acof;
output(q).Bcof=Bcof;
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q=q+1;
95 disp(num2str(q));

end;

end;

100 disp([’estimates = ’ num2str(q-1)]);
toc ,

%prepared all saved results for error evaluation
evals=zeros(1,length(Alist)*length(Blist));

105 for n=1:1:(q-1);
evals(n)=output(n).error;

end;

%search out minima using built in functions
110 Eindex=find(evals==min(evals));

est =1;

%notify the user if more than one minima is found
if length(Eindex >1);

115 disp([’found ’ num2str(length(Eindex)) ’ mse mins , displaying ...
first ’]);

end;

%reload the coefficients for the minimum error set
A=output(Eindex(est)).A;

120 B=output(Eindex(est)).B;
Acof=output(Eindex(est)).Acof;
Bcof=output(Eindex(est)).Bcof;
mse=output(Eindex(est)).error;

125 %regenerate the reconstruction results for display
y2=[ zeros (1 ,420)];
x2=Id;

for n=(1+ max(Acof ,Bcof)):(400);
130 y2(n)=sum(x2(n:-1:n-Bcof +1).*B’)-sum(y2(n-1:-1:n-Acof).*A’);

end;

toc ,

135 disp(’NOTE: The test input has finite frequency content.’);
disp(’the resulting impulse response cannot address high frequency...

inputs ’);

%plotting section
140 %***************************************

figure (1);
subplot (2,1,1); plot(Vg (1:400)); axis tight ; title(’filtered ...

output ’);
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subplot (2,1,2); plot(y2 (1:400)); axis tight ; title ([’recon output ...
of order A= ’ num2str(Acof) ’ and B= ’ num2str(Bcof)]);

145 figure (2);
subplot (2,1,1);
plot ( ( abs(Vg (1:400) -y2 (1:400))),’r-’); axis tight ; title(’abs ...

error by point ’);
subplot (2,1,2);
plot(Vg (1:400)); hold all;

150 plot(y2 (1:400)); hold off;
title(’overlaid voltage & reconstructed voltage ’);

%save data for further use
save ABvalsknee2 A B Acof Bcof Vg y2 x2

A.5 Matlabr Code for data ABhderivemean2

Listing A.5: ABhderivemean2.m
%control input simulation including inverse filtering operations

clear all; close all; clc;

5 load process3data;
clear h;

%downsample the data back to the original scale , this will ...
introduce

%some interpolated values.
10 data=resample(data ,1,4);

%set the input value as being the value after division by
%the initial gain , case #1 in the main document
p=5.48;

15 Vref=XX; %actual value removed for public release
Vbd=XX; %actual value removed for public release

M1=1/( 1 - abs(Vref/Vbd)^p );

20 %setting scale to mean of final oscillations of samples
scale=mean(data (350:420))/M1;
input =[ scale*ones (1 ,426)];

M=data (1:426) ./ input (1:426);
25 Mhold=M(2:425);

%Vg is the voltage deviation
Vg=Vref -Vbd .*(1 -1./ Mhold).^(1/p);

30 Vghold=Vg;
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%Alist =[137:1:141] , Blist =[53:1:57] to recreate known values
Alist =[1:1:200];
Blist = [1:1:200];

35
k=1; %additional sequence delays
q=1;
tic;

40 %increment through the LCCDE solution in matrix form

for index1 =1:1: length(Alist);
for index2 =1:1: length(Blist);

45 Acof=Alist(index1);
Bcof=Blist(index2);

%the zeros assignment is critical for this method to work
%also I_d goes as M, but multiplied back to the data ...

values &
50 %assume that every pixel saw the average for the demand

Id=[zeros(1,floor(max(Acof ,Bcof)+min(Bcof ,Acof)/2)) Mhold*...
scale *(128^2) ];

Vg=[zeros(1,floor(max(Acof ,Bcof)+min(Bcof ,Acof)/2)) Vghold...
];

55 %initialize the matrix to be solved via RREF
Ms=zeros(Acof+Bcof ,2*( Acof+Bcof)+1);
%assign identity matrix values
Ms(1:( Acof+Bcof) ,(Acof+Bcof +2) :(2*( Acof+Bcof)+1))=eye(Acof...

+Bcof ,Acof+Bcof);
count =1;

60
%assign previous input & output values
for n=(k+max(Acof ,Bcof)):1:(k+max(Bcof ,Acof)+Acof+Bcof -1);

Ms(count ,1:( Acof+Bcof +1))=[Id(n:-1:(n-Bcof +1)) -1*(Vg...
(( n-1):-1:(n-Acof))) Vg(n)];

held(count).Ms=Ms;
65 count=count +1;

end;

%solve the system of equations
Ns=rref(Ms);

70
%extract the coefficients
B=Ns(1:Bcof ,(Acof+Bcof +1));
A=[Ns((Bcof +1):(Bcof+Acof) ,(Acof+Bcof +1)) ’]’;

75 %regenerate the test input from the linear difference ...
equations

y2=[Vg(1: Bcof) zeros (1 ,400)];
x2=Id;
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%iterative forward solution
80 for n=(1+ max(Acof ,Bcof)):(400);

y2(n)=sum(x2(n:-1:n-Bcof +1).*B’)-sum(y2(n-1:-1:n-Acof)...
.*A’);

end;

start=length ([Vg(1: Bcof) zeros(1,floor(max(Acof ,Bcof)+min(...
Bcof ,Acof)/2))]);

85
%error calculations & saving coefficient information
output(q).error=mean ( (y2(start :400) -Vg(start :400)).^2 );
output(q).A=A;
output(q).B=B;

90 output(q).Acof=Acof;
output(q).Bcof=Bcof;

q=q+1;
disp(num2str(q));

95 end;

end;

disp([’estimates = ’ num2str(q-1)]);
100 toc ,

%prepared all saved results for error evaluation
evals=zeros(1,length(Alist)*length(Blist));
for n=1:1:(q-1);

105 evals(n)=output(n).error;
end;

%search out minima using built in functions
Eindex=find(evals==min(evals));

110 est =1;

%notify the user if more than one minima is found
if length(Eindex >1);

disp([’found ’ num2str(length(Eindex)) ’ mse mins , displaying ...
first ’]);

115 end;

%reload the coefficients for the minimum error set
A=output(Eindex(est)).A;
B=output(Eindex(est)).B;

120 Acof=output(Eindex(est)).Acof;
Bcof=output(Eindex(est)).Bcof;
mse=output(Eindex(est)).error;

%regenerate the reconstruction results for display
125 y2=[ zeros (1 ,420)];

x2=Id;
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for n=(1+ max(Acof ,Bcof)):(400);
y2(n)=sum(x2(n:-1:n-Bcof +1).*B’)-sum(y2(n-1:-1:n-Acof).*A’);

130 end;

toc ,

disp(’NOTE: The test input has finite frequency content.’);
135 disp(’the resulting impulse response cannot address high frequency...

inputs ’);

%plotting section
%***************************************

140 figure (1);
subplot (2,1,1); plot(Vg (1:400)); axis tight ; title(’filtered ...

output ’);
subplot (2,1,2); plot(y2 (1:400)); axis tight ; title ([’recon output ...

of order A= ’ num2str(Acof) ’ and B= ’ num2str(Bcof)]);

figure (2);
145 subplot (2,1,1);

plot ( ( abs(Vg (1:400) -y2 (1:400))),’r-’); axis tight ; title(’abs ...
error by point ’);

subplot (2,1,2);
plot(Vg (1:400)); hold all;
plot(y2 (1:400)); hold off;

150 title(’overlaid voltage & reconstructed voltage ’);

%save data for further use
save ABvalsknee2 A B Acof Bcof Vg y2 x2

A.6 Matlabr Code for data simcomperror3.m

Listing A.6: simcomperror3.m
%this process applies the forward model coefficents derived in
%ABhderiveknee2 to a postulated photonic input for comparison to ...

the
%recorded signal & range estimation results using Estimation ...

Theory

5 clear all; close all; clc;
%1. load data for filter & data set
%*************************************************************

%this background file was taken at night making it very close to ...
the dark

10 %current values which would normally be used.
[D1,H,stop ,mark]= flash_read_seqv2(’d:\seal\forward Sim\’,[’plywood...

background no subtract2.seq’]);
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[D2,H,stop ,mark]= flash_read_seqv2(’d:\seal\Forward Sim\’,[’plywood...
no subtract.seq’]);

15 %initialize zeros matrixes for target and background
Dtarget=zeros (128 ,128 ,20);
Dbg=zeros (128 ,128 ,20);

%averaging out random noise
20 for n=1:100;

Dbg=Dbg+D1(n).data;
Dtarget=Dtarget+D2(n).data;

end;

25 Dbg=Dbg ./100;
Dtarget=Dtarget ./100;

%manually re -ordering the pixels
Dbg2=cat(3,Dbg (: ,: ,3:20),Dbg(:,:,1));

30 Dtarget2=cat(3,Dtarget (: ,: ,3:20),Dtarget (:,:,1));

clear D1 D2 Dbg Dtarget H mark n stop;

%2. Find the minimum MSE for the predicted pulse shape estimating ...
a perfect

35 %bias for first surface
%*******************************************************************...

H=210;
h1=105;

40 h2=104;

firstdata=squeeze(Dtarget2 (80 ,64 ,:)-Dbg2 (80 ,64 ,:)) ’;

MSE=zeros (20*180 ,4);
45 count =1;

%iteratively search through peak amplitude & pulse center ...
locations and

%calculate error between signal and estimate.

50 for n=1:20;
for m=1:180;

%bias estimation using all values outside the pulse shape
bias=mean([ firstdata (1: floor ((105+m-h1+10) /30)) firstdata(...

floor ((105+m+h1+10) /30) :19)]);
55

%peak scaling solution
peak =1000+n*10;
%scaling hanning window as pulse shape
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pulse=peak*hanning(H);
60

%building the 19 point ( currently upsampled) estimate
firstreturn=bias*ones (1 ,19*30);
firstreturn ( (105+m-h1):(105+m+h2) )=(pulse ’)+bias;
firstdown=downsample(firstreturn ,30);

65
%calculate error on downsampled estimate compared to ...

recorded
%signal
MSE(count ,1)=n;
MSE(count ,2)=m;

70 MSE(count ,3)=mean ( ( firstdown -firstdata).^2 );
MSE(count ,4)=bias;
count=count +1;

end;
75 end;

%find the minimum MSE value
index=find(MSE(:,3)==min(MSE(:,3)));

80 %pull out these values for comparison and display with the ...
original signal

n=MSE(index (1) ,1);
m=MSE(index (1) ,2);
firstMSE=MSE(index (1) ,3),
bias=MSE(index (1) ,4);

85
%generate the estimate
peak =1000+n*10;
firstpeak=peak ,

90 pulse=peak*hanning(H);
firstreturn=bias*ones (1 ,19*30);
firstreturn ( (105+m-h1):(105+m+h2) )=(pulse ’)+bias;

firstcenter =(105+m+30)/30,
95

firstdown=downsample(firstreturn ,30);

%plot the estimate and the recorded signal
figure (1);

100 subplot (2,2,1);
plot(firstdata ,’k:’); hold on;
plot(firstdown ,’k-’); hold off;
axis ([1 19 -200 1500]);
title(’first surface MSE + bias’);

105 legend(’data’,’sim’);

%2. Find the minimum MSE for the predicted pulse shape estimating ...
a perfect

65



%bias for the second surface . The code runs the same except for ...
scaling

%*******************************************************************...

110
seconddata=squeeze(Dtarget2 (59 ,67 ,:)-Dbg2 (59 ,67 ,:)) ’;

MSE=zeros (20*180 ,4);
count =1;

115
for n=1:20;%20

for m=1:180;%20

bias=mean([ firstdata (1: floor ((180+m-h1+10) /30)) firstdata(...
floor ((180+m+h1+10) /30) :19)]);

120
peak =1750+n*10;
pulse=peak*hanning(H);
secondreturn=bias*ones (1 ,19*30);

125 secondreturn ( (180+m-h1):(180+m+h2) )=(pulse ’)+bias;
seconddown=downsample(secondreturn ,30);

MSE(count ,1)=n;
MSE(count ,2)=m;

130 MSE(count ,3)=mean ( ( seconddown -seconddata).^2 );
MSE(count ,4)=bias;
count=count +1;

end;
135 end;

index=find(MSE(:,3)==min(MSE(:,3)));
n=MSE(index (1) ,1);
m=MSE(index (1) ,2);

140 secondMSE=MSE(index (1) ,3),
bias=MSE(index (1) ,4);

peak =1750+n*10;

145 secondpeak=peak ,
pulse=peak*hanning(H);

secondreturn=bias*ones (1 ,19*30);
secondreturn ( (180+m-h1):(180+m+h2) )=(pulse ’)+bias;

150 secondcenter =(180+m+30)/30,
seconddown=downsample(secondreturn ,30);

figure (1);
subplot (2,2,2);

155 plot(seconddata ,’k:’); hold on;
plot(seconddown ,’k-’); hold off;
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axis ([1 19 -200 2000]);
title(’second surface MSE + bias’);
legend(’data’,’sim’);

160
drawnow;

%3. now use the pulse model system for the gain point set at the ...
knee

%both pulse positions must be considered to provide the proper ...
total

165 %photonic demand
%*******************************************************************...

load ABvalsknee2 ; clear y2 Vg h;

170 p=5.48;
Vref=XX; %values suppressed for public release
Vbd=XX; %values suppressed for public release

bias =(4*10^5) ; %A value has to be guessed for the photonic input ...
so that

175 %gain variations outside the pulse can be observed

clear MSE;
MSE=zeros (3*3*3*3 ,6);
count =1;

180 tic;

%The values for a,b,c,d can be set closer to the calculated ...
results to

%display the output quickly a=1:1:3 , b=4:1:6 , c=28:1:30 , d...
=34:1:36;

185 for a=1:1:20;
for b=1:1:20;

for c=1:1:60;

190 for d=1:1:60;

%photonic pulse record building the peak values ...
are based

%on quick radiometric calculations , but their ...
values are

%arbitary as long as they are large enough to ...
excite the

195 %gain variation process . The rescaling of the ...
algorithm

%will match up to the recorded results if its ...
relatively close.
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peak1 =160000;
pulse1=peak1*hanning(H)’;

200
peak2 =160000;
pulse2=peak2*hanning(H)’;

photonstemp1=zeros (1 ,19*30);
205 photonstemp2=zeros (1 ,19*30);

photonstemp1 ( (105+c-h1):(105+c+h2) )=pulse1;
photonstemp2 ( (180+d-h1):(180+d+h2) )=pulse2;

%compiling the photonic record
210 photons =[[ zeros (1 ,120) downsample(photonstemp1 ,30)...

zeros (1,41)];
[zeros (1 ,120) downsample(photonstemp2 ,30) ...

zeros (1 ,41)]];

%initialize the gain value - only one for the ...
array

M=[(1./( 1 -(( Vref -0)./Vbd).^p )).*ones (1 ,180)];
215

%initialize a Vg & ID value for each pixel
Vg=zeros (1 ,180);
Id=zeros (1 ,180);

220 %iteratively calculate the gain value due to ...
photonic

%interaction.
for n=(1+ max(Acof ,Bcof)):1:(180);

Id(n)=sum(M(n).* photons(:,n) ,1);

225 Vg(n)=(sum(Id(n:-1:n-Bcof +1).*B’)-sum(Vg(n...
-1: -1:n-Acof).*A’));

M(n+1) =(1./( 1 -(( abs(Vref+Vg(n)))./Vbd).^p ))...
; %M is based on Vbias

end;

%before adjudicating the gain , we ’ll add the ...
background level so it gets

230 %modified assuming an otherwise flat BG
for n=1:2;

Pcount(n,:)=( photons(n,:)+bias).*M(1:180);
end;

235 %rescale these photcounts to digital counts this ...
section

%also helps reduce the required accuracy of the ...
photonic

%peak value estimates
Mval =(1./( 1 -(( Vref -0)./Vbd).^p ));

240 firstdown=Pcount (1 ,120:138) -bias*Mval;
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firstdown =(1160+a*10)*firstdown /( peak1*Mval);

seconddown=Pcount (2 ,120:138) -bias*Mval;
seconddown =(1850+b*10)*seconddown /( peak2*Mval);

245
%calculate and store the MSEs for each estimated ...

pulse
%position after applying the gain variation ...

process
MSE(count ,1)=a;
MSE(count ,2)=b;

250 MSE(count ,3)=c;
MSE(count ,4)=d;
MSE(count ,5)=mean ( ( firstdata -firstdown).^2 );
MSE(count ,6)=mean ( ( seconddata -seconddown).^2 );

255 count=count +1;

end;

end;
260

end;

end;

265 toc ,

%find the minimum MSEs for the gain variationmodel
index1=find( MSE(:,5)==min(MSE(:,5)) );
index2=find( MSE(:,6)==min(MSE(:,6)) );

270
index1=index1 (1);
index2=index2 (1);

%combined best values to try to find a common result
275 %plotting the minimums for the second best fit

a=MSE(index1 ,1);
b=MSE(index2 ,2);
c=MSE(index1 ,3);

280 d=MSE(index2 ,4);

%regenerate the results for display
peak1 =160000;
pulse1=peak1*hanning(H) ’;

285

peak2 =160000;
pulse2=peak2*hanning(H) ’;

290 photonstemp1=zeros (1 ,19*30);
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photonstemp2=zeros (1 ,19*30);
photonstemp1 ( (105+c-h1):(105+c+h2) )=pulse1;
photonstemp2 ( (180+d-h1):(180+d+h2) )=pulse2;

295 firstcenter2 =(105+c+60)/30,
secondcenter2 =(180+d+60)/30,

photons =[[ zeros (1 ,120) downsample(photonstemp1 ,30) zeros (1,41)];
[zeros (1 ,120) downsample(photonstemp2 ,30) zeros (1 ,41) ]];

300
%initialize the gain value - only one for the array
M=[(1./( 1 -(( Vref -0)./Vbd).^p )).*ones (1 ,180)];

%initialize a Vg & ID value for each pixel 140
305 Vg=zeros (1 ,180);

Id=zeros (1 ,180);

for n=(1+ max(Acof ,Bcof)):1:(180);
Id(n)=sum(M(n).* photons(:,n) ,1);

310
Vg(n)=(sum(Id(n:-1:n-Bcof +1).*B’)-sum(Vg(n-1: -1:n-Acof).*A’));
M(n+1) =(1./( 1 -(( abs(Vref+Vg(n)))./Vbd).^p )); %M is based on ...

Vbias
end;

315 %before adjudicating the gain , we ’ll add the background level so ...
it gets

%modified assuming an otherwise flat BG
for n=1:2;

Pcount(n,:)=( photons(n,:)+bias).*M(1:180);
end;

320

%rescale these photcounts to digital counts

Mval =(1./( 1 -(( Vref -0)./Vbd).^p ));
325

firstdown=Pcount (1 ,120:138) -bias*Mval;
firstdown =(1160+a*10)*firstdown /(peak1*Mval);

seconddown=Pcount (2 ,120:138) -bias*Mval;
330 seconddown =(1850+b*10)*seconddown /(peak2*Mval);

firstMSE2=mean ( ( firstdata -firstdown).^2 );
secondMSE2=mean ( ( seconddata -seconddown).^2 );

335 %plot the results for comparison
figure (1);
subplot (2,2,3);
plot(firstdata ,’k:’); hold on;
plot(firstdown ,’k-’); hold off;

340 axis ([1 19 -200 1500]);
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legend(’data’,’sim’);
title(’first surface MSE + model’);

subplot (2,2,4);
345 plot(seconddata ,’k:’); hold on;

plot(seconddown ,’k-’); hold off;
axis ([1 19 -200 2000]);
legend(’data’,’sim’);
title(’first surface MSE + model’);

350
%save the results
save simcompresults3;

print -deps2 simcomperror3.eps;
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